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Abstract

The primary purpose of finite element stress analysis is to
estimate the reliability of engineering designs. In structural
applications, the von Mises stress due to a given load is often
used as the metric for evaluating design margins. For
deterministic loads, both static and dynamic, the calculation of
von Mises stress is straightforward [2]. For random load
environments typically defined in terms of power spectral
densities, however, the deterministic theory normally applied to
compute RMS acceleration, displacement, or stress tensor
responses cannot be applied directly to calculate the probability
distribution of von Mises stress, a nonlinear function of the linear
stress components. Recently methods have been developed to
solve this problem [4]. Those methods and are applied here to an
example structure.

1. Introduction

Failure of ductile structures is associated with von Mises
stresses that exceed the strength of the material. A first level
reliability survey would consist of calculating RMS values of von
Mises stress and assuring that those values are comfortably less
than the strength of the material involved[3]. The next level of
scrutiny would involve computing the probability distribution of
von Mises stress at regions of high RMS value, to assess what
fraction of the time that material exceeds some threshold value of
von Mises stress.

In an accompanying paper [4], Segalman and Reese derive the
probability integral for von Mises stress resulting from the
application of Gaussian, zero-mean loads to a linear structure.
They also show how that integral can be approximated

conveniently. Here, we illustrate the application of those methods
to a specific structure.

Because the von Mises stress is a nonlinear, (non-negative)
function of the stress tensor, the probability distribution of von
Mises stress cannot be Gaussian, even if the components of the
stress tensor each have Gaussian distribution. In general, the
form of the von Mises probability distribution is not knoven
priori. Design of structures to achieve a desired level of
reliability with respect to von Mises stress requires calculation of
both the form of the probability distribution and the parameters
of that distribution.

The reliability of structures of ductile material is assessed in
terms of the probability distribution of the von Mises stress. That
distribution depends on both the structure and the loading
applied, so at minimum, calculation of the distribution requires a
linear model for the structure and a statistical specification of the
input forces. In principle, from the linear model one can deduce
all required transfer functions. The input forces are typically
specified by their auto spectral densities with all phase content
missing. In the case of multiple force inputs, the forces may be
specified by a cross spectral density matrix over frequency. The
method illustrated here uses exactly that information, along with
a linear model for the structure, to calculate the probability
distribution of von Mises stress.

2. Analytical reliability model

The von Mises stress is a function of the stress tensor:
2 T
p(t,x) = o(t,x) Aa(t,x), Eql

where
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Here, o(t, x) is the stress vector at tinte  and location

containing the six non redundant terms in the stress tensor.

The derivation of Segalman and Reese [4] shows the
probability of the von Mises stress being less than some vélue
to be given by

P< = [ Tle00M o
E{D}Y)

where E({D},Y) is theN -dimensional ellipsoid containing
points of the procesy that generate von Mises stress less than
Y:

Eq 3

E({D},Y) = {y:(y' D*) <Y} .

The diagonal matrixD is obtained through a process that
involves the covariance matrix of the modal coordinates and the
tensor-valued stress distributions associated with each mode. The
covariance matrix is obtained in part from the cross spectral
density matrix. Considerations of the lineage®f  show that it
can have dimension at most five. See [4] for a detailed discussion
of this derivation.

Eq 4

The derivation referred to above also illustrated that the root-
mean-square value of von Mises stress can be expressed in terms
of D,

Eq5

In general, the integral of Equation 3 cannot be evaluated
analytically. A method for numerical quadrature that yields upper
and lower bounds for the that integral was introduced by
Segalman and Reese [4]. That quadrature is sufficiently efficient
that examining the probability distribution of von Mises stress at
selected locations is now tractable.

3. Example Problem

Here we apply the analytical methods discussed above to the
hollow cylindrical structure shown in Fig. 1. The system has
free-free boundary conditions, with a large mass tied at one end.
As discussed in [3], transfer functions relating output stress due
to input force can be calculated. With these quantities known, the
output von Mises stress due to a random load can be computed.

Three random input loads were considered and independently
applied to the cylinder tip as shown. Figure 2 illustrates the
power spectra of the applied input. These three load cases were
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Figure 1. Finite element model of hollow cylinder.

selected to excite the vibrational modes of the system
deferentially. In each case, the resulting von Mises probability
distribution is evaluated at four points, denoted\aB, C, andD

in the figure. These points were selected to show the widest
variety in the form of probability distribution of RMS von Mises
stress from all excited modes throughout the structure, and for all
frequencies of interest.

4. Verification of the analytical method

To check the validity of our analytic methods, time series data
was synthesized and compared with the analytical predictions of
von Mises stress distributions at each of the four points on the
structure. The necessary ingredients of the calculations indicated
in [4] were assembled in MATLAB using modal data and
transfer functions obtained from MSC/NASTRAN. The resulting
{D,} were used in a C language code to calculate the
probability distributions.

Time series data was synthesized in the following manner:

e A Fourier expansion for the imposed load was created from
the PSD of Fig. 2.

* Random phase information was assigned to the input.

¢ The above synthesized Fourier expansion for load was mul-
tiplied by the appropriate vector-valued stress transfer func-
tions to obtain the Fourier expansions for stress.
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Figure 2. Acceleration PSD imposed at

base of cylinder.
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Figure 3. Probability density functions for von
Mises stress at location A.

« Time series for stress were obtained by inverse Fourier
transform of the above series.

¢ The quadratic indicated in Equation 1 is evaluated at each
time to yield a time series of von Mises stress.

¢ Histograms are compiled from the above time series.

Because Fourier transforms of very long series must be

assembled at each sensor location for each test, the above process

is very tedious and not of much practical use. Still it provides a
reasonable basis for comparison to the innovative method
presented in [4]. The cumulative probability distribution is
constrained to increase monotonically from zero to one. As a
result, it is difficult to compare details of such curves. Instead, we
compare the probability density functions (derivatives of the
cumulative probability).

Figure 3 shows the probability density curves of von Mises
stress for all three loadings at location A. Shown are both the
histograms obtained from the synthetic data and corresponding
curves obtained by differentiation of the computed cumulative
probability. Very good agreement is achieved. This point was
selected for study because it was anticipated that for each
loading, all excited vibration modes would contribute to the same
stress component. A result of this co-linearity of the stresses is
that the rank of matrbD , a quantity indicative of the number of
independent random processes experienced at the point of
observation, is 1. The derivation in Reference 4 indicates that the
form of the probability density for such problems would be the
right-hand side of a normal distribution, which agrees with the
shape of the curves in Fig. 3.

Figure 4 shows the probability density curves of von Mises
stress for all three loadings at location B. The rankof  is one
for loadings in the X and Z directions. For those loadings, the
distribution is similar in form to the distributions in Fig. 3. The
rank of D associated with loading in the Y direction is 2 and the
form of the probability density is different: the density is zero at
the origin, increases linearly, reaches a maximum and then
declines. Again, agreement between the analytic approximation
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Figure 4. Probability density functions for von
Mises stress at location B.
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Figure 5. Probability density functions for von

Mises stress at location C.

and the histogram of the artificial data is very good.

Figure 5 illustrates the probability density curves of von Mises
stress for all three loadings at location C. The rankDof  is two
for all three load cases. The distributions are similar in form to
the distribution associated with the Y loading in Fig. 4.
Agreement between the analytic approximation and the
histogram of the artificial data is still quite good.

Probability density functions of von Mises stress for the
loadings at location D are shown in Fig. 6. The rankbf  is two
for loadings in the X and Z directions and curves of the form
described in the above paragraph are seen again. For the case of
loading in the Y direction, the rank d s three. In this case the
form of the analytic probability density is subtly different from
what is shown in the other two curves. For this loading, the
density is zero at the origin, increases quadratically, reaches a
maximum and then declines. Again, we have very good
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Figure 6. Probability density functions for von

Mises stress at location D.

agreement between the histogram of the synthetic data and the
analytic approximation.

There is some complexity to the structural response of the
cylinder to the applied loads. For the case of loadings in the X
and Y directions, the rank of the covariance matrix of the modal
coordinates is eight. For loading in the Z direction, the rank is
nine. The covariance matrix plays a role in the calculatioof
and its rank is an upper bound for the rankdf . In general the
maximum possible rank d0 s five, but in problems such as this
where there are only three non-redundant components of the
stress tensor, the maximum rankD@f is three. This restriction is
illustrated in Fig. 7, where the rank @ is contoured over the
surface of the cylinder.

5. On Reliability Calculations

In dealing with Gaussian distributions, we are in the habit of

rank[D] = 1 y

N
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rank[ D] = 2

Figure 7. Contours of the rank of  Dver the

surface of the cylinder.

Case |Rankof D, D, D, p such that
No D 0.998<P(p)
1 1 1.0 3.00
2 2 1.0 0.1 3.
3 3 1.0 1.0 1.0 2.p

Figure 8. Example values of D and comparison with
the “three sigma” rule.
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Figure 9. Cumulative probability for three cases
of the matrix D

making assumptions such as that 99.8% of all values will be less

than three times the RMS value. Such assumptions are not
always appropriate. To illustrate, consider three different cases of

the matrixD . These cases are enumerated in Table 1, where the
D, ’'s are the singular values &f

The cumulative distributions for these three cases are
presented in Fig. 9. In this figure, the abscissas are normalized by
the RMS value of von Mises stresp, . For Case 1, having only
one random process in effect, the value of von Mises stress below
which 99.8% of occurrences lie 3.0p - as one expects. For
case 2, the three sigma practice again appears adequate. This is
not surprising since th®; 's are so similar. For Case 3, on the
other hand, the value of von Mises stress below which 99.8% of
occurrences lie i22.2p , showing the “three sigma” rule to be
conservative.

Having shown that the “three sigma” rule is not always
accurate for a von Mises failure criterion, we now show that the
method illustrated in this paper for calculating cumulative
probability distribution can be used constructively to make the
necessary estimates.

A good representation of the status of a design with respect to
a random loading is obtained from Figs. 10 and 11. In Fig. 10,
the RMS values of von Mises stress are plotted for the case of
loads in the Y direction imposed on the finite element model.
Figure 11 shows the contours of the probability that von Mises
stress is greater than 2000 psi for the same problem. Note that



Figure 10. Contours of RMS von Mises stress
(psi) resulting from random forces
applied in the Y direction at the cylinder

log 1[P(2000 psi< p)]

Figure 11. Contour plot of the logarithm of the
probability that von Mises stress is
greater than 2000 psi.

P(2000 psi< p) = 1-P(p<2000 ps). These two pictures
provide the designer the information necessary to identify

regions that might require redesign.
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6. Summary

The method of [4] for calculating the probability distribution
for von Mises stress has been illustrated on a simple structure. It
has been shown that the number of independent random stress
processes taking place varies from place to place on the structure.
It is this number of independent processes that determines the
form of the probability distribution of von Mises stress at a given
point. As a result, one can know if the “three sigma” rule is
overly conservative only if the distribution is known at every
point. Where reliability with respect to von Mises stress is a
design constraint, the method for calculating the probability
distribution of von Mises stress introduced in [4] is a tractable
and appropriate tool.
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